Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT The nucleus accumbens (NAcc) and ventral pallidum (VP) are key nodes in the mesolimbic reward pathway that facilitate stimulus salience, including the regulation of social motivation and attachment. Primate species display variation in social behaviors, including different levels of impulsivity, bonding, and aggression. Previous research has implicated neuromodulation of the reward pathway in the differential expression of various social behaviors, suggesting that differences in neurotransmitter innervation may play a role in species‐specific patterns. To explore this, we examined serotonergic innervation in the NAcc and VP among primates. We used stereology to quantify serotonin transporter‐immunoreactive (SERT‐ir) axon length density in the NAcc and VP of 13 primate species, including humans, great apes, and cercopithecid and platyrrhine monkeys. Our data show that serotonergic innervation density within both the NAcc and VP is highly conserved among species. This finding contrasts with our previous findings of higher levels of SERT‐ir axons in the dorsal striatum of humans and great apes relative to monkeys, a human‐specific increase in dopaminergic innervation within the NAcc and VP, and a human‐specific increase of neuropeptide Y in the NAcc, highlighting the mosaic nature of innervation patterns among species.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.more » « less
- 
            The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.more » « less
- 
            Gojobori, Takashi (Ed.)Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees ( Pan troglodytes ) and rhesus macaques ( Macaca mulatta ). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.more » « less
- 
            null (Ed.)Abstract Information processing under conditions of uncertainty requires the involvement of cognitive control. Despite behavioral evidence of the supramodal function (i.e., independent of sensory modality) of cognitive control, the underlying neural mechanism needs to be directly tested. This study used functional magnetic imaging together with visual and auditory perceptual decision-making tasks to examine brain activation as a function of uncertainty in the two stimulus modalities. The results revealed a monotonic increase in activation in the cortical regions of the cognitive control network (CCN) as a function of uncertainty in the visual and auditory modalities. The intrinsic connectivity between the CCN and sensory regions was similar for the visual and auditory modalities. Furthermore, multivariate patterns of activation in the CCN predicted the level of uncertainty within and across stimulus modalities. These findings suggest that the CCN implements cognitive control by processing uncertainty as abstract information independent of stimulus modality.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
